

POLITECNICO

Department of Energy & Department of Chemistry, Materials, and Chemical Engineering

Matteo Maestri & Alberto Cuoci

Heterogeneus catalysis within OpenFOAM

HPC enabling of OpenFOAM for CFD applications

November, 26th, 2012

Introduction and motivation

Development of the catalyticFOAM solver for the OpenFOAM[®] framework

- Governing equations
- Numerical methodology

Validation and examples

- Annular reactor (simple chemistry)
- CPO of CH₄ on platinum gauze (complex 3D geometry)
- CPO of iso-octane (complex chemistry)
- Tubular reactor with Raschig rings (complex 3D geometry)

Extensions

- ✓ KMC (Kinetic Monte Carlo)
- ✓ Multi-region solver

Conclusions and future works

Introduction and motivation

Development of the catalyticFOAM solver for the OpenFOAM[®] framework

- Governing equations
- Numerical methodology

Validation and examples

- Annular reactor (simple chemistry)
- CPO of CH₄ on platinum gauze (complex 3D geometry)
- CPO of iso-octane (complex chemistry)
- Tubular reactor with Raschig rings (complex 3D geometry)

Extensions

- ✓ KMC (Kinetic Monte Carlo)
- ✓ Multi-region solver

Conclusions and future works

Chemical reactor engineering

Catalytic reactor design:

- Important in chemical industry (~90% of industrial chemical processes are catalytic)
- ✓ Need for an accurate design to provide high yields (€)
- Need for a deep understanding for advanced design

Chemical reactor engineering

Catalytic reactor design:

- Important in chemical industry (~90% of industrial chemical processes are catalytic)
- ✓ Need for an accurate design to provide high yields (€)

Need for a deep understanding for advanced design

Chemical reactor design

Chemical reactor design

M. Maestri – in "New strategy for chemical synthesis and catalysis" Wiley, 2011

Result of the interplay among phenomena at different scales

A multiscale phenomenon

Need of tools for analysis

Need of tools for analysis

A "first principles" approach to CRE

POLITECNICO

DI MILANO

Introduction and motivation

Development of the catalyticFOAM solver for the OpenFOAM[®] framework

- Governing equations
- Numerical methodology

Validation and examples

- Annular reactor (simple chemistry)
- CPO of CH₄ on platinum gauze (complex 3D geometry)
- CPO of iso-octane (complex chemistry)
- Tubular reactor with Raschig rings (complex 3D geometry)

Extensions

- ✓ KMC (Kinetic Monte Carlo)
- ✓ Multi-region solver

Conclusions and future works

$$\rho \hat{C}_{P} \frac{\partial T}{\partial t} + \rho \hat{C}_{P} \mathbf{v} \nabla T = \nabla \cdot (\lambda \nabla T) - \rho \sum_{k=1}^{NG} \hat{C}_{P,k} \omega_{k} \mathbf{V}_{k} - \sum_{k=1}^{NG} \hat{H}_{k}^{\text{hom}} \dot{\Omega}_{k}^{\text{hom}}$$

gas-phase energy

Non-catalytic walls

$$\nabla \omega_{k} \Big|_{inert} = 0$$
$$T \Big|_{inert} = f(t,T)$$
$$\nabla T \Big|_{inert} = g(t,T)$$

Catalytic walls

$$\begin{split} \rho \, \Gamma_{k,mix} \left(\nabla \, \omega_k \right) \Big|_{catalytic} &= -\alpha_{cat} \, \dot{\Omega}_k^{het} \qquad k = 1, \dots, NG \\ \lambda \left(\nabla T \right) \Big|_{catalytic} &= -\alpha_{cat} \sum_{j=1}^{NR} \Delta H_j^{het} \dot{r}_j^{het} \\ \sigma_{cat} \, \frac{\partial \theta_i}{\partial t} &= \dot{\Omega}_i^{het} \qquad i = 1, \dots, NS \end{split}$$

Adsorbed (surface) species

<u>M. Maestri</u>, Microkinetic analysis of complex chemical processes at surface, in "New strategy for chemical synthesis and catalysis", Wiley-VCH (2012)

Detailed microkinetic models

 $COOH^{*+*} \rightarrow CO^{*+}OH^{*}$ $CO^{*}+OH^{*} \rightarrow COOH^{*}+^{*}$ $COOH^{*+*} \rightarrow CO_{2}^{*}+H^{*}$ $CO_{2}^{*}+H^{*} \rightarrow COOH^{*}+^{*}$ $CO_2^* + H_2O^* \rightarrow COOH^* + OH^*$ $COOH^* + OH^* \rightarrow CO_2^* + H_2O^*$ $CO_2^* + H^* \rightarrow HCOO^{**}$ $HCOO^{**} \rightarrow CO_2^* + H^*$ $CO_{2}^{*} + OH^{*} + ^{*} \rightarrow HCOO^{**} + O^{*}$ $HCOO^{**} + OH^* \rightarrow CO_2^* + H_2O^*$ $CH^* + H^* \rightarrow CH_2^* + *$ $CH^* + * \rightarrow C^* + H^*$ $C^* + H^* \rightarrow CH^* + *$ $CH_3^* + O^* \rightarrow CH_2^* + OH^*$ $CH_2^* + OH^* \rightarrow CH_3^* + O^*$ $CH^* + OH^* \rightarrow CH_2^* + O^*$ $CH_2^* + O^* \rightarrow CH^* + OH^*$

$$r_{j} = A_{j} \cdot T^{\beta_{j}} \cdot \exp\left(-\frac{E_{att,j}(\boldsymbol{\theta}_{i})}{RT}\right) \prod_{i=1}^{NC} (c_{i})^{\nu_{ij}}$$

Numerical challenges

Dimensions of the system

- Proportional to the number of species
- Proportional to the number of cells

Numerical challenges

Dimensions of the system

- Proportional to the number of species
- Proportional to the number of cells

Stiffness

- Different temporal scales involved
- Different spatial scales involved

Numerical challenges

Dimensions of the system

- Proportional to the number of species
- Proportional to the number of cells

Stiffness

- Different temporal scales involved
- Different spatial scales involved

✓ Non-linearity

- Source term non linear in concentrations and temperature
- Coverage dependence of activation energy

Dimensions of the system

- Proportional to the number of species
- Proportional to the number of cells

Stiffness

- Different temporal scales involved
- Different spatial scales involved

Non-linearity

- Source term non linear in concentrations and temperature
- Coverage dependence of activation energy

Open∇FOAM

OLITECNICO

DI MILANO

segregated approaches are not feasible

Introduction and motivation

Development of the catalyticFOAM solver for the OpenFOAM[®] framework

- Governing equations
- Numerical methodology

Validation and examples

- Annular reactor (simple chemistry)
- CPO of CH₄ on platinum gauze (complex 3D geometry)
- CPO of iso-octane (complex chemistry)
- Tubular reactor with Raschig rings (complex 3D geometry)

Extensions

- ✓ KMC (Kinetic Monte Carlo)
- ✓ Multi-region solver

Conclusions and future works

Numerical solution

Numerical solution

Operator-splitting algorithm

Strang splitting (I)

Strang splitting (I)

Strang splitting scheme

Chemical step

Transport step

Strang splitting (I)

Strang splitting (II)

Strang splitting (II)

Strang splitting (II)

Operator splitting algorithm (I)

Global system

Jacobian matrix:

- ✓ Sparse
- ✓ Unstructured
- ✓ Blocks

Operator splitting algorithm (II)

Global system

 $\frac{\partial \varphi}{\partial t} = M + S$

Operator splitting algorithm (III)

Global system

Operator splitting algorithm (IV)

Global system

Reactor network

Each computational cell behaves as a chemical reactor in the splittingoperator algorithm (chemical step)

Each reactor is described by a set of stiff ODE, which must be integrated on the time step Δt

NF = number of catalytic faces NG = number of gas-phase species NS = number of adsorbed (surface) species

Equations: $N = NG + 1 + NF \cdot NS$

Semi-batch reactor

NF = number of catalytic faces NG = number of gas-phase species NS = number of adsorbed (surface) species

Unknowns $N = NG + 1 + \frac{NF \cdot NS}{NS}$

Batch reactor

POLITECNICO

DI MILANO

POLITECNICO

DI MILANO

POLITECNICO

DI MILANO

catalyticFOAM structure

Stiff ODE solvers in catalyticFOAM (I)

	Language	Linear system solution	Parallel	Code available	License
BzzMath6	C++	Direct	No	No	Free only for academic use
DVODE	FORTRAN	Direct	No	Yes	Free
CVODE	С	Direct/Iterative	Yes	Yes	Free
DLSODE	FORTRAN	Direct	No	Yes	Free
DLSODA	FORTRAN	Direct	No	Yes	Free
RADAU5	FORTRAN	Direct	No	Yes	Free
LIMEX4	FORTRAN	Direct	No	Yes	Free only for academic use
MEBDF	FORTRAN	Direct	No	Yes	Free

Most of the CPU Time (80-90%) is spent for the numerical integration of the ODE systems corresponding to the homogeneous and heterogeneous reactors

The best performances are obtained using the following solvers: BzzMath6, CVODE, DVODE

Performances of stiff ODE solvers: CPU time

For each solver a common C++ interface was created

Creation of ODE System objects

Creation of ODE System Solver

OpenSMOKE::OpenSMOKE_DVODE<ODESystem_BatchReactor_Homogeneous_DVODE>
ode Homogeneous(odeSystemObject Homogeneous);

Loop on every computational cell

```
ode_Homogeneous.SetMaximumNumberOfSteps(100000);
ode_Homogeneous.SetAnalyticalJacobian(false);
ode_Homogeneous.SetAbsoluteTolerance(aTol);
ode_Homogeneous.SetRelativeTolerance(rTol);
ode_Homogeneous.SetInitialValues(t0,Y0);
ode_Homogeneous.Solve(tf);
ode_Homogeneous.Solution(yF);
```


Main features:

 Solution of the Navier-Stokes equations (laminar and turbulent regime)

Solution procedure

Main features:

- Solution of the Navier-Stokes equations (laminar and turbulent regime)
- No limit to the number of species and reactions

Solution procedure

conditions

Solution procedure


```
while (runTime.run())
                            loop
{
           #include "readTimeControls.H"
           #include "readPISOControls.H"
           #include "compressibleCourantNo.H"
           #include "setDeltaT.H"
           runTime++;
           Info<< "Time = " << runTime.timeName() << nl << endl;</pre>
           #include "rhoEqn.H"
                                     continuity
           for (label ocorr=1; ocorr <= nOuterCorr; ocorr++)</pre>
            {
                       #include "UEqn.H"
                                                 momentum
                                                                 Strang (predictor)
                       #include "chemistry.H"
                       #include "properties.H"
                       #include "YEqn.H"
                                                                 Strang (corrector)
                       #include "TEqn.H"
                       // --- PISO loop
                       for (int corr=1; corr<=nCorr; corr++)</pre>
                       {
                                                                  PISO loop
                                   #include "pEqn.H"
                       }
            }
           #include "write.H"
                                  Post-processing
}
```

Predictor step (chemistry)

```
Loop over all the reactors
          if reactor is catalytic
                    assembling ODE initial values
                    (gas-phase species, temperature, adsorbed species)
                    solving the ODE system
                    moving the solution to OpenFOAM
                                                                       Numerical library for
          }
                                                                         stiff ODEs system
          else
                                                                      (LSODE, RADAU5, CVODE,
          Ł
                                                                            BzzMath, etc.)
                    assembling ODE initial values
                    (gas-phase species and temperature)
                    solving the ODE system
                    moving the solution to OpenFOAM
```

POLITECNICO DI MILANO

gasProperties gasKinetics surfaceProperties	"H2onRh_UB] "H2onRh_UB] "H2onRh_UB]	_MatteoTDC _MatteoTDC _MatteoTDC	_2008/idealgas.bin"; _2008/reactions.bin" _2008/surface.bin";	Thermodynamics/Transport ; properties and kinetic schemes	
homogeneousReactions	s on;	Homoge reactions	neous s on/off		
energyEquation off; Gas-phase energy equation on/off					
viscosityMixingLaw	Herning;	Evaluation of dynamic visc	osity		
absoluteTolerance 1.e-12; Absolute and relative tolerances (ODE solver) RelativeTolerance 1.e-7;					
AlfaCatalyst 1.5668	Specific (dimens	, catalytic surf ionless)	ace		

Introduction and motivation

Development of the catalyticFOAM solver for the OpenFOAM[®] framework

- Governing equations
- Numerical methodology

Validation and examples

- Annular reactor (simple chemistry)
- CPO of CH₄ on platinum gauze (complex 3D geometry)
- CPO of iso-octane (complex chemistry)
- Tubular reactor with Raschig rings (complex 3D geometry)

Extensions

- ✓ KMC (Kinetic Monte Carlo)
- ✓ Multi-region solver

Conclusions and future works

Laminar, coflow flames (I)

PolimiC1C16HT kinetic scheme 168 species 5400 reactions Freely available in CHEMKIN format: http://creckmodeling.chem.polimi.it

2D axisymmetric (55x200 mm) Computational grid: ~10,000 cells Pressure/Velocity coupling: PISO Discretization: first order upwind

Bennet, B.A., McEnally, C.S., Pfefferle, L.D., Smooke, M.D., Colket, M.B., Computational and Experimental Study of Axisymmetric, Coflow Partially Premixed Ethylene/Air Flames, Combustion and Flame (2001)

5.E-04

Measurements along the axis

Laminar, coflow flames (II)

M.D. Smooke, A. Ern, M.A. Tanoff, R.H. Mohammed, D.F. Marran, B. Long, Proceedings of the Combustion Institute, 26 (1996) 2161-2170.

Introduction and motivation

Development of the catalyticFOAM solver for the OpenFOAM[®] framework

- Governing equations
- Numerical methodology

Validation and examples

- Annular reactor (simple chemistry)
- CPO of CH₄ on platinum gauze (complex 3D geometry)
- CPO of iso-octane (complex chemistry)
- Tubular reactor with Raschig rings (complex 3D geometry)

Extensions

- ✓ KMC (Kinetic Monte Carlo)
- ✓ Multi-region solver

Conclusions and future works

The numerical tests have been performed by investigating the combustion of a fuel-rich H_2 over Rh catalyst in an annular reactor ^(*).

Operating conditions		
Inner radius	0.235 cm	
Outer radius	0.450 cm	
Reactor length	1.5 cm	
H ₂ mole fraction	0.04 (-)	
O ₂ mole fraction	0.01 (-)	
N ₂ mole fraction	0.95 (-)	
Pressure	1 atm	
Rh site density	2.49 10 ⁻⁹ mol/cm ²	
Catalytic surf.	5 cm ⁻¹	

(*) M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D. Vlachos, 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst, Chemical Engineering Science (2008)

Meshes 2D Axisymmetric Mesh from 2,000 to 10,000 cells

- Centered (2nd order) spatial discretization
- Implicit Euler time integration
- Max Courant number 0.1

Heterogeneous kinetics

5 Species: Rh(s), H2O(s), H(s), OH(s), O(s)

18 Reactions

- 1. H2+2Rh(s) =>2H(s)
- 2. 2H(s) = >H2 + 2Rh(s)
- 3. O2+2Rh(s) => 2O(s)
- 4. 20(s)=>02+2Rh(s)
- 5. OH(s) + Rh(s) = > H(s) + O(s)
- 6. H(s) + O(s) = > OH(s) + Rh(s)
- 7. H2O(s) + Rh(s) = > H(s) + OH(s)
- 8. H(s) + OH(s) = > H2O(s) + Rh(s)
- 9. H2O(s) + O(s) = > 2OH(s)
- 10. 2OH(s) = >H2O(s) + O(s)
- 11. OH+Rh(s) =>OH(s)
- 12. OH(s) => OH+Rh(s)
- 13. H2O+Rh(s) =>H2O(s)
- 14. H2O(s) => H2O+Rh(s)
- 15. H+Rh(s) =>H(s)
- 16. H(s) => H+Rh(s)
- 17. O+Rh(s) =>O(s)
- 18. O(s) => O+Rh(s)

Microkinetic mechanism Maestri et al., 2008 Mhadeshwar and Vlachos, 2005

Homogeneous kinetics

- 10 Species
- 21 Reactions
 - 1. H+O2=OH+O
 - 2. O+H2=OH+H
 - 3. H+O2+M=HO2+M
 - 4. H+202=H02+O2
 - 5. OH+HO2=H2O+O2
 - 6. H+HO2=2OH
 - 7. O+HO2=O2+OH
 - 8. 20H=O+H2O
 - 9. H2+M=2H+M
 - 10. O2+M=2O+M
 - 11. H+OH+M=H2O+M
 - 12. H+HO2=H2+O2
 - 13. 2HO2=H2O2+O2
 - 14. 20H+M=H2O2+M
 - 15. O+OH+M=HO2+M
 - 16. H+H2O=H2+OH
 - 17. H2O2+H=H2O+OH
 - 18. H2O2+H=H2+HO2
 - 19. HO2+H2O=>H2O2+OH
 - 20. OH+H2O2=>H2O+HO2
 - 21. O+H2O2=>OH+HO2

PolimiH2 mechanism (Frassoldati et al., 2006)

Comparison with experimental measurements

(*) M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D. Vlachos, 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst, Chemical Engineering Science (2008)

Comparison with experimental measurements

(*) M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D. Vlachos, 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst, Chemical Engineering Science (2008)

Comparison with experimental measurements

(*) M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D. Vlachos, 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst, Chemical Engineering Science (2008)

Introduction and motivation

Development of the catalyticFOAM solver for the OpenFOAM[®] framework

- Governing equations
- Numerical methodology

Validation and examples

- Annular reactor (simple chemistry)
- CPO of CH₄ on platinum gauze (complex 3D geometry)
- CPO of iso-octane (complex chemistry)
- Tubular reactor with Raschig rings (complex 3D geometry)

Extensions

- ✓ KMC (Kinetic Monte Carlo)
- ✓ Multi-region solver

Conclusions and future works

CPO of methane over platinum gauze (I)

Operating conditions			
Inlet temperature	600 K		
Inlet velocity	10 m/s		
Gauze temperature	1000-1200 K		
CH ₄ mole fraction	0.143 (-)		
O ₂ mole fraction	0.057 (-)		
He mole fraction	0.80 (-)		
Pressure	1.3 bar		
Pt site density	2.72 10 ⁻⁹ mol/cm ²		
Catalytic surf.	5 cm ⁻¹		

POLITECNICO DI MILANO

(*) R. Quiceno, J. Perez-Ramirez, J. Warnatz, O. Deutschmann, Modeling the high-temperature catalytic partial oxidation of methane over platinum gauze: detailed gas-phase and surface chemistries coupled with 3D flow simulations, Applied Catalysis A: General 303 (2006) 166-176

CPO of methane over platinum gauze (II)

Outlet

- Centered (2nd order) spatial discretization
- Implicit Euler time integration
- Max Courant number 0.05

Heterogeneous kinetics

- 11 Surface Species
- 36 Surface Reactions

www.detchem.com/mechanisms

(*) R. Quiceno, et al., Applied Catalysis A: General 303 (2006) 166-176

Homogeneous kinetics

- 25 Species
- 300 Reactions

http://creckmodeling.chem.polimi.it/

(*) E. Ranzi, et al., Progress in Energy Combustion Science, 38 (2012) 468-501

CPO of methane over platinum gauze (III)

CPO of methane over platinum gauze (IV)

CH4 and O2 conversions are not temperature dependent

 The CO selectivity is strongly influenced by the gauze temperature

 Mass fraction of main adsorbed species (CO(s), OH(s), etc.) is maximum downstream, where the inlet mixture meet the catalyst wires

Introduction and motivation

Development of the catalyticFOAM solver for the OpenFOAM[®] framework

- Governing equations
- Numerical methodology

Validation and examples

- Annular reactor (simple chemistry)
- CPO of CH₄ on platinum gauze (complex 3D geometry)
- CPO of iso-octane (complex chemistry)
- Tubular reactor with Raschig rings (complex 3D geometry)

Extensions

- ✓ KMC (Kinetic Monte Carlo)
- ✓ Multi-region solver

Conclusions and future works

CPO of iso-octane over rhodium catalyst (I)

(*) M. Hartmann, L. Maier, H.D.Minh, O. Deutschmann, Catalytic partial oxidation of iso-octane over rhodium catalyst: an experimental, modeling and simulation study, Combustion and Flame 157 (2010) 1771-1782

CPO of iso-octane over rhodium catalyst (II)

CPO of iso-octane over rhodium catalyst (III)

DETCHEM^{CHANNEL} www.detchem.com

M. Hartmann, et al.,, Combustion and Flame 157 (2010) 1771-1782

Introduction and motivation

Development of the catalyticFOAM solver for the OpenFOAM[®] framework

- Governing equations
- Numerical methodology

Validation and examples

- Annular reactor (simple chemistry)
- CPO of CH₄ on platinum gauze (complex 3D geometry)
- CPO of iso-octane (complex chemistry)
- Tubular reactor with Raschig rings (complex 3D geometry)

Extensions

- ✓ KMC (Kinetic Monte Carlo)
- ✓ Multi-region solver

Conclusions and future works
Tubular reactor with Raschig rings (I)

BASE

The Chemical Company

Operating conditions		
1 cm		
15 cm		
0.100 (-)		
0.056 (-)		
0.844 (-)		
873.15 K		
0.15 s		

Velocity Field

3D Unstructured Mesh: ~250,000 cells

- Homogeneous reactors: 240,000
- Heterogeneous reactors: 10,000

No homogeneous reactions! CPU time per heterogeneous reactor: 0.75 ms

CatalyticFOAM: Heterogeneus catalysis within OpenFOAM

Tubular reactor with Raschig rings (II)

Adsorbed species (mass fractions)

POLITECNICO DI MILANO

O2

H2 (0.-0.006)

(0.-0.054)

CH4 (0.-0.10)(0.-0.056) Tubular reactor with Raschig rings (III)

- Introduction and motivation
- Development of the catalyticFOAM solver for the OpenFOAM[®] framework
 - Governing equations
 - Numerical methodology
- Validation and examples
 - Annular reactor (simple chemistry)
 - CPO of CH₄ on platinum gauze (complex 3D geometry)
 - CPO of iso-octane (complex chemistry)
 - Tubular reactor with Raschig rings (complex 3D geometry)

Extensions

- KMC (Kinetic Monte Carlo)
- Multi-region solver

Conclusions and future works

A "first-principles" approach

A "first-principles" approach

POLITECNICO

DI MILANO

M. Maestri – in "New strategy for chemical synthesis and catalysis" Wiley, 2011

First-principles kinetic Monte Carlo

- Evaluate the statistical interplay of large number of elementary processes
- ✓ open non-equilibrium system → need to explicitly follow the time evolution
- ✓ rare event dynamics → Molecular Dynamics simulations unsuitable. Map on a lattice model→ Markov jump process description

$$\frac{d}{dt}P(\boldsymbol{x},t) = \sum_{\boldsymbol{y}} k(\boldsymbol{x},\boldsymbol{y})P(\boldsymbol{y},t) - \sum_{\boldsymbol{y}} k(\boldsymbol{y},\boldsymbol{x})P(\boldsymbol{x},t)$$

- ✓ Each site a has own entry in x denoting its adsorbate state x_a
- ✓ Simulate trajectories x(t) (kinetic Monte Carlo)

K. Reuter and M. Scheffler, *Phys. Rev. B* 73, 045433 (2006)

CatalyticFOAM: Heterogeneus catalysis within OpenFOAM

"Effective" bridging between the scales

✓ Continuum equations need boundary conditions for the mass fluxes j^a at the surface:

$$J_n^{\alpha} = v^{\alpha} M^{\alpha} \mathbf{\Gamma} \mathbf{O} \mathbf{F}$$

• 11

 Coupled problem: to determine the TOF with 1p-kMC the pressures at the surface are needed, but the pressure field depends on the TOF

- kMC too expensive for direct coupling to the flow solver
- Run kMC beforehand and interpolate (Modified Shepard)
- ✓ Very efficient
- Easily extendable to more complex geometries

 $T_{s} = 600 \text{K}, p_{s}(O_{2}) = 1 \text{atm}$

S. Matera and K. Reuter, *Catal. Lett.* 133, 156-159 (2009); *Phys. Rev. B* 82, 085446 (2010).

An example: The reactor STM (I)

The Reactor STM

Rasmussen, Hendriksen, Zeijlemaker, Ficke, Frenken, The Reactor STM: A scanning tunneling microscope for investigation of catalytic surfaces at semi-industrial reaction conditions, Review of Scientific Instruments, 69(11), (1998)

CO oxidation on Ru₂O

Rate constants k(x,y) from DFT and harmonic Transition State Theory

Model system

- \checkmark CO oxidation on RuO₂(110)
- ✓ 2 types of sites, bridge and cus

K. Reuter and M. Scheffler, *Phys. Rev. B* 73, 045433 (2006)

An example: The reactor STM (II)

Computational details Mesh: unstructured, ~90,000 cells Discretization: 2nd order, centered Max time step: 10⁻⁴ s CPU time: ~2 s per time step

Steady-state results

An example: The reactor STM (IV)

CatalyticFOAM: Heterogeneus catalysis within OpenFOAM

Introduction and motivation

Development of the catalyticFOAM solver for the OpenFOAM[®] framework

- Governing equations
- Numerical methodology

Validation and examples

- Annular reactor (simple chemistry)
- CPO of CH₄ on platinum gauze (complex 3D geometry)
- CPO of iso-octane (complex chemistry)
- Tubular reactor with Raschig rings (complex 3D geometry)

Extensions

- ✓ KMC (Kinetic Monte Carlo)
- Multi-region solver

Conclusions and future works

- In the original version of catalyticFOAM the catalyst morphology is not detailed
- the presence of the catalyst was accounted for by as boundary condition imposing continuity between the reactive flux and the diffusive flux to and from the catalytic surface.

This approach does not account for diffusive limitations in the solid phase or in general for the intrasolid transport phenomena

Need of a Multi-Region Solver (gas phase + solid phases)

Coupling at the boundary interface:

- Conjugate heat transfer
 - Conjugate mass transfer

Partitioned Approach

- Governing equations are solved in each zone with the appropriate BCs.
- Mixed BCs for a PDE indicates that different BCs are used on different parts
- of the boundary of the domain of the equation.
- The resulting conditions have to be used for each region, according to the
- updated values in the neighboring one.

Ine partitioned approach

The numerical tests have been performed by investigating the combustion of a fuel-rich H_2 over Rh catalyst in an annular reactor ^(*).

Operating conditions		
Inner radius	0.235 cm	
Outer radius	0.450 cm	
Reactor length	1.5 cm	
H ₂ mole fraction	0.04 (-)	
O ₂ mole fraction	0.01 (-)	
N ₂ mole fraction	0.95 (-)	
Pressure	1 atm	
Rh site density	2.49 10 ⁻⁹ mol/cm ²	
Catalytic surf.	5 cm ⁻¹	

(*) M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D. Vlachos, 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst, Chemical Engineering Science (2008)

CatalyticFOAM: Heterogeneus catalysis within OpenFOAM

Example: annular reactor (II)

Solid mesh (catalytic layer)

Numerical simulations take into account the solid phase (catalytic layer) in order to model the diffusive limitations and correctly capture the experimental measurements

> Fluid mesh (gaseous phase) Fluid mesh (catalytic layer) Solid mesh (catalytic layer)

The mesh is thus highly refined near the catalytic wall in the radial direction

CatalyticFOAM: Heterogeneus catalysis within OpenFOAM

Example: annular reactor (II)

Solid mesh (catalytic layer)

Numerical simulations take into account the solid phase (catalytic layer) in order to model the diffusive limitations and correctly capture the experimental measurements

> Fluid mesh (gaseous phase) Fluid mesh (catalytic layer) Solid mesh (catalytic layer)

The mesh is thus highly refined near the catalytic wall in the radial direction

O₂ mass fraction in radial direction in the solid phase

strong influence of diffusive intra-phase limitations inside the 50 µm thick catalytic solid phase in the middle range of temperatures

- adopted Splitting scheme
- Development of the catalyticFOAM solver for the OpenFOAM[®] framework
- Numerical tests
- Validation tests
- ✓ Show-case

Implementation of the solution procedure

OLITECNICO

DI MILANO

- Optimization of spatial and temporal discretization
 - Reliable description of the system
- Wide applicability

- ✓ Description of the solid-phase:
 - Energy transport within the solid and with the environment
 - Mass transport within the solid (diffusion and reaction problem, i.e., detailed assessment of internal mass limitations)
- Validation and extension to turbulent flow
- Kinetic Monte Carlo
- Parallelization of the calculation
- Storage/retrieval methods (e.g. ISAT) for fast numerical integration of ODE systems

The catalyticFOAM software is fully compatible with OpenFOAM version 2.1.x.

Nevertheless, it is not approved or endorsed by ESI/OpenCFD, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks.

Software will be released under the L-GPL license through an independent webiste: www.catalyticfoam.polimi.it

Students involved in the project: S. Goisis, A. Osio, M. Calonaci, F. Furnari, G. Gentile, F. Manelli, S. Rebughini, B. Baran, Y. Niyazi The Chemical Company

CatalyticFOAM: Heterogeneus catalysis within OpenFOAM

- C++ library for homogeneous and heterogeneous chemistry (complex kinetics, thermodynamics, transport properties)
- Development of the catalyticFOAM solver for the OpenFOAM[®] framework

Validation tests (lab-scale systems)

- Annular reactor (simple chemistry)
- ✓ CPO of CH₄ on platinum gauze (complex 3D geometry)
- CPO of iso-octane (complex chemistry)
- Tubular reactor with Raschig rings

Extension to turbulent flow

Numerics

- Storage/retrieval methods (e.g. ISAT) for fast numerical integration of ODE systems
- Steady state problems: more efficient strategies
- Improvement of parallel performances

Matteo Calonaci

Federica Furnari

Sandro Goisis

Alessandra Osio

Thank you for your attention!

www.catalyticfoam.polimi.it catalyticfoam@polimi.it

CatalyticFOAM: Heterogeneus catalysis within OpenFOAM

Any geometry with arbitrary complexity can be investigated with catalyticFOAM.

Operating conditions		
Inner radius	0.235 cm	
Outer radius	0.450 cm	
Reactor length	1.5 cm	
H ₂ mole fraction	0.04 (-)	
O ₂ mole fraction	0.01 (-)	
N ₂ mole fraction	0.95 (-)	
Pressure	1 atm	

(*) 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst. M. Maestri, A. Beretta, T. Faravetli, G. Groppi, E. Tronconi, D. Vlachos – CES 2008

Any geometry with arbitrary complexity can be investigated with catalyticFOAM.

Operating conditions		
Inner radius	0.235 cm	
Outer radius	0.450 cm	
Reactor length	1.5 cm	
H ₂ mole fraction	0.04 (-)	
O ₂ mole fraction	0.01 (-)	
N ₂ mole fraction	0.95 (-)	
Pressure	1 atm	
Eccentricity	50 %	

Any geometry with arbitrary complexity can be investigated with catalyticFOAM.

Operating conditions		
Inner radius	0.235 cm	
Outer radius	0.450 cm	
Reactor length	1.5 cm	
H ₂ mole fraction	0.04 (-)	
O ₂ mole fraction	0.01 (-)	
N ₂ mole fraction	0.95 (-)	
Pressure	1 atm	
Slope (x-axis)	2,5°	
Slope (y-axis)	2,5°	

(*) 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst. M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D. Vlachos – CES 2008

The possible eccentricity of the annulus in experimental apparatus has been investigated with catalyticFOAM.

Operating conditions		
Inner radius	0.235 cm	
Outer radius	0.450 cm	
Reactor length	1.5 cm	
H ₂ mole fraction	0.04 (-)	
O ₂ mole fraction	0.01 (-)	
N ₂ mole fraction	0.95 (-)	
Pressure	1 atm	
Eccentricity	50 %	

Identification of the calculation domain

- ✓ Eccentricity of 50%
- Planar symmetry

Identification of the calculation domain

(*) 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst. M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D. Vlachos – CES 2008

(*) 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst. M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D. Vlachos – CES 2008

Any geometry with arbitrary complexity can be investigated with catalyticFOAM.

Operating conditions	
Inner radius	0.235 cm
Outer radius	0.450 cm
Reactor length	1.5 cm
H_2 mole fraction	0.04 (-)
O ₂ mole fraction	0.01 (-)
N ₂ mole fraction	0.95 (-)
Pressure	1 atm
Slope (x-axis)	2,5°
Slope (y-axis)	2,5°

The case of cylinders with incident axis has been studied with catalyticFOAM

(*) 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst. M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D. Vlachos – CES 2008

(*) 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst. M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D. Vlachos – CES 2008

More Complex Geometries

Square channel with catalytic spheres

Operating conditions	
Channel Side	0.30 cm
Channel length	1.50 cm
Sphere diameter	1.00 cm
CH ₄ mole fraction	0.10
O ₂ mole fraction	0.056
N ₂ mole fraction	0.844
Pressure	1 atm
Temperature	873 K
Inlet velocity	2 m/s
Residence Time	7.5 ms
Reynolds Number	130
Rh site density	2.49 10 ⁻⁹
KII SHE GEHSHY	mol/cm ²
Catalytic surface	1.566 (-)

Heterogeneous kinetics

- 13 Species
- 82 Reactions

Maestri et al., 2009 Mhadeshwar and Vlachos, 2005

Homogeneous kinetics

- 23 Species
- 84 Reactions

DRM19 Kinetic Mechanism

Meshes

- 2X: 696 cells (58 x 12)
- 3X: 2784 cells (116 x 24)
- 4X: 11136 cells (232 x 48)

Numerical details

- Centered (2nd order) spatial discretization
- Implicit Euler time integration
- Max Courant number 0.1

Main results (steady-state)

The calculation mesh is divided in structured and unstructured zones

Operating conditions

Channle thickness	0.8 cm
Channel length	6 cm
CH_4 mole fraction	0.100 (-)
O ₂ mole fraction	0.056 (-)
N ₂ mole fraction	0.844 (-)
Temperature	873.15 K
MESH	27,000 cells

Channel with catalytic, toroidal elements

3D Mesh: ~450,000 cells

- Homogeneous reactors: 445,000
- Heterogeneous reactors: 5,000

No homogeneous reactions! CPU time per heterogeneous reactor: 0.75 ms

This time is weakly dependent on the specific features of the investigated case

The numerical tests have been performed by investigating the combustion of a fuel-rich H_2 over Rh catalyst in an annular reactor ^(*).

Operating conditions	
Inner radius	0.235 cm
Outer radius	0.450 cm
Reactor length	1.5 cm
H ₂ mole fraction	0.04 (-)
O ₂ mole fraction	0.01 (-)
N ₂ mole fraction	0.95 (-)
Pressure	1 atm
Rh site density	2.49 10 ⁻⁹ mol/cm ²
Catalytic surf.	5 cm ⁻¹

(*) M. Maestri, A. Beretta, T. Faravelli, G. Groppi, E. Tronconi, D. Vlachos, 2D detailed modeling of fuel-rich H₂ combustion over Rh/Al₂O₃ catalyst, Chemical Engineering Science (2008)

underestimation of conversion values occurring at high temperatures

It is then possible to investigate also the underestimation of conversion values occurring at high temperatures: the "conversion enhancing mechanism" observed in the experimental data cannot be due homogeneous gas phase chemistry playing a role at high temperatures, as the fraction of H* which is predicted to desorb in the gas phase at 500°C is many order of magnitudes lower than the one identified as necessary to trigger gas-phase chemistry.

It is then possible to investigate also the underestimation of conversion values occurring at high temperatures: the "conversion enhancing mechanism" observed in the experimental data cannot be due homogeneous gas phase chemistry playing a role at high temperatures, as the fraction of H* which is predicted to desorb in the gas phase at 500°C is many order of magnitudes lower than the one identified as necessary to trigger gas-phase chemistry.

A possible explanation for this has been formulated by Maestri et al. (2008), in terms of **additional zones** of low catalytic activity outside the catalytic bed.

Two section with low catalytic activity up-stream and downstream the catalytic bed are added to the simulations. A catalyst layer of 2 mm is then added upward the main bed. Another one is added downstream, with a length of 7 mm. The catalytic activity of these beds is fixed equal to 1% of that of the main bed.

Non-catalytic walls

$$\nabla \omega_k \big|_{inert} = 0$$
$$T \big|_{inert} = f(t,T)$$
$$\nabla T \big|_{inert} = g(t,T)$$

Catalytic walls

$$\begin{split} \rho \, \Gamma_{k,mix} \left(\nabla \, \omega_k \right) \Big|_{catalytic} &= -\alpha_{cat} \, \dot{\Omega}_k^{het} \qquad k = 1, \dots, NG \\ \lambda \left(\nabla \, T \right) \Big|_{catalytic} &= -\alpha_{cat} \, \sum_{j=1}^{NR} \Delta H_j^{het} \, \dot{r}_j^{het} \\ \sigma_{cat} \, \frac{\partial \theta_i}{\partial t} &= \dot{\Omega}_i^{het} \qquad i = 1, \dots, NS \end{split}$$

Adsorbed (surface) species

<u>M. Maestri</u>, Microkinetic analysis of complex chemical processes at surface, in "New strategy for chemical synthesis and catalysis", Wiley-VCH (2012)

Detailed microkinetic models

 $COOH^{*+*} \rightarrow CO^{*+}OH^{*}$ $CO^*+OH^* \rightarrow COOH^*+^*$ $COOH^{*+*} \rightarrow CO_{2}^{*+}H^{*}$ $CO_{2}^{*}+H^{*} \rightarrow COOH^{*}+^{*}$ $CO_2^* + H_2O^* \rightarrow COOH^* + OH^*$ $COOH^* + OH^* \rightarrow CO_2^* + H_2O^*$ $CO_2^* + H^* \rightarrow HCOO^{**}$ $HCOO^{**} \rightarrow CO_2^* + H^*$ $CO_{2}^{*} + OH^{*} + ^{*} \rightarrow HCOO^{**} + O^{*}$ $HCOO^{**} + OH^* \rightarrow CO_2^* + H_2O^*$ $CH^* + H^* \rightarrow CH_2^* + *$ $CH^* + * \rightarrow C^* + H^*$ $C^* + H^* \rightarrow CH^* + *$ $CH_3^* + O^* \rightarrow CH_2^* + OH^*$ $CH_2^* + OH^* \rightarrow CH_2^* + O^*$ $CH^* + OH^* \rightarrow CH_2^* + O^*$ $CH_2^* + O^* \rightarrow CH^* + OH^*$

$$r_j = A_j \cdot T^{\beta_j} \cdot \exp\left(-\frac{E_{att,j}(\theta_i)}{RT}\right) \prod_{i=1}^{NC} (c_i)^{\nu_{ij}}$$

chemistry

chemistry